
J .  Fluid Mech. (1973), vol. 58, part 4, pp. 677-687 

Printed in Great Britain 

677 

Shear layers in a rotating stratified fluid 
with bottom topography 
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The structure of shear layers due to bottom topography in a rotating stratified 
fluid is obtained under the restriction as 4 E t ,  where aS = vagAT/KQ2L is a 
measure of the stratification and E = v/WL is the Ekman number. The layers 
are found to  be similar to the side-wall layers discussed by Barcilon & Pedlosky 
(19673) if aS B EP and are Stewartson layers if crS < E%. Some comments are 
made on the possibility of Taylor column formation in a stratified fluid. 

1. Introduction 
We consider here the shear layers introduced by a discontinuity of bottom 

slope in a rotating stratified fluid. Our results are of interest for the study of ocean 
motion over a non-level bottom (e.g. near a ridge or a shelf); however, they are 
not directly applicable to this in consequence of our implicit assumption that the 
vertical and horizontal scales have the same order of magnitude (see below). The 
layers can also appear in laboratory experiments. 

Shear layers of the type considered here are to be expected wherever there is 
a discontinuity on a boundary surface (that is not parallel to the axis of rotation) 
such that the Ekman-layer transports and the interior fields are discontinuous. 
They were studied originally by Stewartson (1957), who considered a homo- 
geneous rotating fluid and showed that large gradients may exist in two layers 
parallel to the axis of rotation.? The thicknesses of these layers are of order E f L  
and E*L, where E = v(S1L2)-l is the Ekman number and v, SZ and L are the 
kinematic viscosity, the angular velocity and a characteristic length, respec- 
tively. These layers may be either boundary layers on a wall or detached shear 
layers; outside them the flow is geostrophic and controlled by the Ekman layers 
(of thickness EhL) . 

Barcilon & Pedlosky (1967 b, hereafter referred to as BP) have shown that the 
side-wall layers are progressively altered as the stratification increases, but they 
did not discuss the detached shear layers. A measure of the stratification is 
OS = aN2Q-2, where cr is the Prandtl number and N the Brunt-V&is&liil$ fre- 
quency. When cr8 < E%, the fluid behaves essentially as if it were homogeneous; 
if E3 < gL3 < E+ the layer splits into a hydrostatic layer of thickness ~ 8 4  and 
a buoyancy layer of thickness EtcrSA; however, the latter is not present to lowest 

t It should be kept in mind that physically there is just one layer, one transition region. 
M&htwmtiCally we can distinguish, asymptotically for small vdues of the relevant para- 
meters, different regions where appropriate approximations to the equations are taken, 
corresponding to particular dynamical balances. 
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FIGURE 1 

order in the particular case (no heat flux through the wall) treated by BP. The 
parametric range EB 4 US 4 1 has not been investigated in detail, although 
Barcilon &Pedlosky suggest that twolayers of thicknesses EbS-)and (vS)3exist. 

The structure and the role of the wall layers of BP depend on the boundary 
conditions; if a vertically varying heat flux is imposed on the vertical wall, the 
influence is felt in the interior, which is no longer controlled by the Ekman layers, 
and the buoyancy layer will play a significant role. We show here that, although 
there is a heat flux through the free shear layers, there is still no buoyancy layer 
and no influence in the interior. 

In  3 2 we follow the formulation of BP and, under the assumptions Crx, E < 1, 
we calculate the interior fields without referring to the side-wall or the shear 
layers; this is possible in virtue of the result of BP that in this parametric range 
the motion is controlled by the Ekman layers. The structure of the shear layers is 
derived in § 3, under the restriction US < E*, and the solution is completed in $4,  
using the method of matched asymptotic expansions. For OX 9 EQ i t  is found 
that the results are quite similar to the BP solution for the wall layers; for 
US Q E f  the layers are essentially Stewartson layers and are given in $5. In  both 
cases the layer has a sandwich structure, a thin layer between two thicker ones. 
The mass transport in the thicker (EQ) layers vanishes somewhere between the 
top and bottom, so that the two types of layers interchange fluid and they both 
take part in the transport of fluid from top to bottom. The results for the EQ layer 
are shown to be uniformly valid for d3 Q E*. 

In  the study of an ocean model the effects of different horizontal and vertical 
scales must be taken into account. Blumsack (1972) has shown that there are 
situations where vertical layers of thickness E*D and oSQD (D being the depth) 
can be predicted in a rotating stratified ocean. 

2. Formulation 
We consider the flow of an incompressible, viscous, heat conducting fluid in 

the axially symmetric container depicted in figure I. The system is rotating with 
angular velocity Q, the motion being driven by a differential rotation of the top 
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plate. The height of the container is L. A rotating cylindrical co-ordinate system 
with unit vectors F, 8 and 4 is used, the bottom being described by 

0 for r* < aL, 
(r* - aL) tan a for aL < r* < EL. 

z* ={  
Starred quantities are dimensional. The velocity components are (a*, w*, w*); the 
lid (z* = L )  has arbitrary relative velocity vg(r*) 8. 

For convenient reference we use the formulation, approximations and notation 
of BPt and start with their non-dimensional equations (2.1)-(2.3): 

2kx q = -Vp+T&+EV2q, 

v.q = 0) 

d'k. q = EV2T. 

Our typical velocity is Iwg(r*)lmex, yielding the Rossby number 

* *  
8 = I v d r  )Irniax/QL. 

The system (2.1)-(2.3) is to be solved subject to the boundary conditions 

q( r ,O)  = 0, z = 0, r < a, 

q(r,  1) = v7(r) 6, z = lY 
q(r,(r-u)tana) = 0, z = (r-a)tana,  a < r < R, ] (2.4) 

and fi . V T  = 0 on all solid boundaries. 
We look for axisymmetric solutions; accordingly, (2.2) is satisfied by letting 

q = V x  (: -$ ( r , z ) e  -) + T x ( r , z ) 6 ,  l 

whereby (2.1) and (2.3) become 

2 8 , ~  = EL?4$+ra,T, (2.5) 

(2.6) 

dS'av$ = E(a,ra,T+a;rT), (2.7) 

- 2 8, @ = E P x ,  

where 2Z2 = r 8Jr-l&.) + a: = W 2  + 8;. The boundary conditions (2.4) become 

0 a t  x = (r -a) tanaH(r -a)y .={ rv,(r) = X,(r) a t  x = 1 

and @ = a,@ = a,T = 0 on all boundaries. ( H  is Heaviside's step function.) 
The z derivatives in the viscous terms of (2.5)-(2.7) are important only in the 

Ekman layers on the top and on the bottom. The Ekman-layer analysis is 

f This implies, among other things, that the temperature is written as 

T* = T,* + ATZ*/L + e(CPL/Ccg) T ,  
so that the basic stratification is linear. In the undisturbed state the isopycnal surfaces 
are then horizontal provided that Pr = @L/g  << 1 (Greenspan 1968, $1.4; Barcilon & 
Pedlosky 1967c), and provided that the sloping part of the bottom is maintained at the 
approprim% temperature. 
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standard and need not be reproduced; the constraints imposed on the interior 
flow? are: 

a t z =  1: 

a t  z = 0, r < a: 
$ + + E ~ ( X - X ~ )  = 0, a,T = trSE-b-la,$; (2.8a, b)  

$ - +E$y = 0, a,T = - a;SE-*r-l&.$; (2.9 a, b)  

a t z = ( r - a ) t a n a , r  > a :  
$ - &(E cos a)-*x = 0, (2.10 u) 

a,T = -aSE-lr- l[(s ina)~+(Ecosa)~a,$] ,  (2.10 b)  

where n is the inward normal to the wall. Equations (2.10) reduce to (2.9) for 
a = Oandareinvalidastana+co; when sina = 0(1), (2.10b) is, to leading order, 

r(sina8,T -cosaa,T) = aSE-laina$. (2.10 c) 

We can now obtain asymptotically valid solutions of (2.5)-(2.7) using boundary- 
layer methods. The notation is as follows: the subscripts + or - denote the 
fields in r > u or r < a; the regions away from r = a and r = R are called the 
interior, wherein we add the subscript i (i.e. $+$, $-i, x+$. . .). In  the neighbour- 
hood of r = a we consider additive corrections to  the interior fields, vanishing 
exponentially as Ir - a[ becomes large; for those boundary-layer corrections we 
use the overbar, caret and tilde of BP. 

The interior 
It will be shown a t  the end of $ 4  that by taking 8,T+i = 0 and = Era, q the 
equations and boundary conditions on T are satisfied; then (2.5)-(2.7) reduce to 

(2 .1la)  

(2.11 b )  

(2.11 c) 

The solution is straightforward; using the boundary conditions (2.8) and (2.9) 
for r < a, we obtain 

(2.12) 

(2.13) 

(2.14) 

These solutions have been given in a footnote in BP; they are valid when there is 
no heat flux through the boundaries. We see that provided that trS <i 1 the 
interior flow can be obtained, to O(mS), without calculation of the side-wall layers. 

$+&, 4 = 9E*hxr(r)/D, (2.15) 

t For this purpose an ‘interior region’ is any regionwhere the radial gradients are o(E-4). 

Similarly, using (2.10) instead of (2.9) we have in r > a 
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(2.16) 

(2.17) 

where h = (cos a)-*, xB = zB(r) = (T - a) tan a 

and D ES l + h + h ( ~ S / 4 E i ) ( l - ~ , ) .  

The main features are well known (Barcilon & Pedlosky 1967 a, b ) :  for as < E8 
the flow is to leading order the same as in the homogeneous case; when 
E* < OX < 1 vertical motions are constrained to become of O(E/cS) and the 
swirl velocity increases linearly from its value a t  the bottom to its value at the 
top; when aS = O(1) there is no Ekman suction and the flow is controlled by 
dissipative processes. 

From (2.12)-(2.17) we see that the fields are discontinuous at r = a, except 
when aS $ Ei ;  to smooth out the discontinuities there must be a narrow transi- 
tion region where the radial gradients are large and the approximate equations 
(2.11) are invalid. 

3. The shear layers 
The correction fields near r = a satisfy 

2a,x, = Ea:31r,faa,T,, (3.1 a) 

-2a,$, = Ea;x,, asa,lc., = aEa,2T,. (3.1 b,c) 

Eliminating T, and $c, we obtain an equation for xc: 
( E 2 a ~ + ~ S a ~ + 4 8 ~ ) x ,  = 0,  (3.2) 

with the boundary conditions, derived from a combination of (2.8)-(2.10) and 
(3.119 

4E4aZx-,It (aS+E2a,4)X-, = 0 ( r  < a, z = 4;5&), (3.3) 

or 4(E cos a)* 8,x+, - (as + E2 3) x+, = 0 

4 E 8 8 , x + , + ( ( ~ S + E ~ a ~ ) ~ + ~  = 0 

The region r < a 

x-c = (A-sinwx+B-cosoz) expP(a-r) is a solution of (3.2)-(3.3) provided that 

(r > a, z li 0),  (3.4a) 

(3.4 b )  (r > a, x = 1). 

w2 = ~ ( E 2 / 3 6 + ~ s , 5 2 ) ,  (3.5) 

0 2  [ 2coso+ ( --- ;p2 ':p2) sino] = 0, 

A- = (w/E&p2) B-. 

w = 0,  i.e. p4 = -cTSE-~, 
The roots of (3.6) are 

and approximately, if as < E&y 

(a) o = nm, i.e. E2P6 + cS,@ = ( 2 n ? ~ ) ~ ,  

(3.6) 
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which gives 

and p2 = (aS)-1(2nn)2 for crS 9 E3; (3.10) 

(b )  p2 = 2E-4 I -- where B = crSE-4. (3.11) 

These different roots correspond to the layers of Stewartson (1957) and BP. 
Consider first the modified E )  layers from (3 .11) .  Noting that w 4 1, w2 = O(s) 

(3 .12)  

Limiting ourselves to the parameter range E8 < CTS < Ei ,  we have from the 

p6 = ( 2 n ~ E - l ) ~  for CTS < EQ (3 .9 )  

( i4) 

and w2/P2E# = O(e), we have 

x- = B-{[1 -&z(z- 1)Iexp [ - E-424(1 -As.) Ir-al] +O(e2)), 

where B- is a constant and the overbar notation conforms with BP. 

roots (3 .10)  the hydrostatic layers, where 

w = 0(1 ) ,  w2/P2E* = O(S) ;  
m 

9- = B-,{cos nnz exp [ - 2nnraX-4 Ir - a]] + O(s)). (3 .13)  

Finally, we consider the buoyancy layer obtained from the root 0) = 0, equa- 
tion (3.8). This implies that x is independent of the vertical co-ordinate; such 
a solution is apparently possible, but then the conditions (3.3) are satisfied in 
a degenerate way; the buoyancy layer will be discussed in $4. 

n=l  

The  region r > a 
Similarly, x + ~  = ( A ,  sinpz +B+ cospz) exp y(r  - a) is a solution of (3.2)-(3.4) 
provided that 

p2 = t(E2yS+aSp),  (3.14) 

A+ = (ph/ESy2) B+. 

From this we obtain the Ei  layer, where 

y2 = (I + A )  E d  

(3 .15)  

(3.16) 

(3 .17)  

X+ = B + ( l - ~ z ( z - ~ ) ) e x p [ - - E - f ( l + ~ ) B  l + h  

(3.18) 

and the hydrostatic layer, where 

p = nn,  y2 = (aS) -1 (2nn)2 ,  (3.19) 

(3 .20)  
La 

f+ = B+, cos nnz exp [ - 2nnaS-*(r - a)] .  
n=l  
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4. Matching of the solutions 
To determine the constants B, and Bin, appropriate jump conditions at r =a 

must be found. A systematic way to obtain them is by the method of matched 
asymptotic expansions (Van Dyke 1964). We outline the procedure. The outer 
solution for r < a is taken as 

xo-  = x-i+x-+x- 
and for r > a as 

xo+ = x+i + x+ + 2+* 
The inner solution is obtained by introducing the stretched co-ordinate 
p = E-BrS*(r-a) in (3.2); the inner field 2 (i now represents the total field 
rather than a boundary-layer correction) is the solution of 

h 

(a;+az).- x = - 4Egs-%a:h;, (4.1) 

where 2 is to be expanded in an asymptotic series 

The asymptotic sequence ,ui(E,aS) is found from the form of the inner 
expansion of the outer solution, expressed in inner variables. We have 

xo- N +x7(a) [I + $s(z - +) + . . .] 
+ BJ1- &z(z - l)] [ 1 +  &26( 1 -&)p + e s y + .  ..] 
+ C B-, cos nm[ 1 + 2n?zSp + . . -1 

n=l 

and 

I €62( 1 + A )  
x I-€+S(l+h)* ( I - -  ;4hz;;;1)p+ [ p+ ... 

m 

+ B,, GOS nnz[ (1 - 2nnSp + . . .] , 
n=l 

(4.3 a)  

(4.3 b )  

where S = Eh5I-P. 
The expansion for 2 is then chosen as 

;t7 = c (€%)i 63j&. (4.4) 

Since 2 represents the total field in the neighbourhood of r = a, we must 
require 2, and therefore each gi, j, to be continuous, with its first five derivatives. 
Hence, substituting (4.4) into (4.1) and solving yields 

i, j 

for all i ,  j = 0,1,  (4.5) 
i , j  = 2,3.  (4.6) for all 

In  deriving those solutions we have assumed = O( I) (in (4.1) only the radial 
co-ordinate is stretched), so that z appears only parametrically in the equations. 
Near z = 0 and z = 1, i.e. where the Ekman layers merge into the shear layers, 
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there is a 'corner region' where the full equations (2.5)-(2.7) must be solved, 
because the x derivatives can be as large as the r derivatives. Therefore the solu- 
tions (4.5) and (4.6) are valid only for 0 < z < 1 and not at  z = 0 and x = 1. 
Pedlosky (197 1) encounters a similar difficulty in the corresponding problem of 
a side-wall layer. 

Since (8; + 8;) Z,, = - 4aZ2, 2, the terms z,, will involve the general solution 
of (a," + 1) 2 = 0, and therefore represent a true contribution from the buoyancy 
layer only if em, or a;B, are non-zero. It turns out that the first such contri- 
bution is from z2, 4. 

Clearly (4.5) and (4.6) do not represent boundary-layer contributions but are 
merely the leading terms of the expansion of xo+ near r = a. Matching 2 with 
xo- and xO+, we obtain the constants: 

1 

(4.7 c) 

The result (4.5) implies that x,, and arxo are continuous at r = a; an alternative 
way to determine the constants B, and B,, is by solving 

X- i - tX -+$-  = x+i+x++2+ 
and 

a t  r = a. This is entirely equivalent to the matching procedure, and formally 
more direct. 

The higher derivatives are not, and do not need to be, continuous, to this order. 
The continuity of the solution can be satisfied by including higher order terms. 
There will be a buoyancy layer where the azimuthal velocity component is of 
order sS4 = EbS-2 .  

The radial and vertical velocity components are continuous and can be 
derived from the stream function, which is given by 

We have 

Ux-, + X -  + 9-1 = + x+ + 2+) 

az$ = - +Ea;x. 

@.-=-EgB-(z-+) 
- 
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Thus both layers take part in the net mass transport from the bottom to the top; 
this transport is equal to the difference between the flux in the Ekman layers on 
the sloping and on the flat parts of the bottom. The transport in the thicker outer 
layers (Ei  layers) vanishes between x = 0 and z = 1; at those points all the flux 
is in the inner layer. 

Finally, we must show that the temperature field satisfies the boundary and 
continuity conditions. Since +$ is of the form E*(+o +€PI + . . .), is of the form 
s(To+eTl+ ...) (see equation (2.7)). Then the conditions (2.8b) and (2.9 b )  reduce, 
to leading order, to a,T, = 0 ( x  = 0, l) ,  whereas ( 2 . 1 0 ~ )  is obviously satisfied by 
taking tjzq = 0 and ~ i 9 $ ~  = Er tj,.q from (2.11 c). Clearly then the solutions (2.14) 
and (2.17) satisfy the boundary conditions at top and bottom through the Ekman 
layers. Now one expects the radial heat flux to be continuous a t  r = a (and zero 
at  r = R); since 8,T = r-ld'E-l$ everywhere, the continuity (or, at  the wall, 
the vanishing) of + fulfills this requirement. 

5. Concluding remarks 
The results presented above are valid for Ej  Q uS < E4. However, the solution 

for the interior is valid under the milder restriction as 4 1; when E4 << as < 1 
the discontinuities in the interior fields appear only to higher orders and the 
shear layers disappear (see Barcilon & Pedlosky 1967 a, b) .  We obtain the solution 
for a homogeneous fluid by setting aS = 0. The buoyancy and hydrostatic 
layers merge into a E* Stewartson layer and the results are (the calculations are 
not reproduced here; they follow essentially Stewartson (1957), see also Moore & 
Saffman (1969) and Greenspan (1968)) 

~ + ( r ,  z )  = xT(r)  (1 + A)-l[I+ +{[2(h + I)]+ - 2) exp { - (A + I)* E-t(r - a)}] + f(p, x ) ,  
(5.1 a )  
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We observe that the Ei layer is obtained simply by letting crS = 0 in the corre- 
sponding solution for a stratified fluid. We conclude that the results (3.12) and 
(3.18) (combined with (4.7)) are uniformly valid for aX Q E4. 

The solution (5.1)-(5.3) is almost identical to Stewartson's result (1957; see 
also Greenspan 1968, p. 104) for a concentric disk configuration. The Fourier 
series are not convergent at p = z = 0; this is the point where the Ekman layer 
erupts into the Ef layer, and feeds it. Moore & Saffman (1969) have shown how 
the matching conditions on the Et layer fields can be obtained by consideration 
of the admissible singularities of similarity solutions in the E* layer. They observe 
that the vertical velocity component can have a delta-function singularity at 
( r ,  z )  = (a,  0). The corresponding singularity in q? is a step discontinuity, which 
we have taken into account by working separately in r a and then connecting. 

In the stratified case, the singularity is in the buoyancy as well as in the hydro- 
static layer. Pedlosky (1971) has shown in a similar context that the fluid 
entering the buoyancy layer a t  z = 0 is distributed in the aS* layer over a very 
short distance, so that the buoyancy layer is absent except a t  x = 0 and 1. 

The fact that a bottom slope discontinuity produces a shear layer of the 
Stewartson type has been demonstrated by Jacobs (1964) in his study of the 
Taylor column problem in a homogeneous fluid, whereas Davies (1972), in a 
beautiful series of experiments, studied the restriction of the column due to 
stratification. He finds that a very small amount of stratification reduces the 
height of the column significantlyt (nonlinear effects were not negligible in his 
experiments). It follows directly from our theory that a strong Taylor column 
can still form if stratification is small enough, viz. if crS < Eg. When CTS E9, 
the results (2.12)-(2.17) imply that there is no discontinuity in the interior and 
therefore no shear layers. This is, however, peculiar to our configuration: it is 
clear that a discontinuity in the slope of the bottom cannot produce any dis- 
continuity in the interior owing to the diffusive nature of the flow when X 9 E). 
On the other hand, discontinuities in the vdocity of the boundary will be felt in 
the interior. Such discontinuities will obviously be present in a typical experi- 
ment, where an obstacle is dragged along the bottom ofarotating tank. Therefore 
we conjecture that a Taylor column can still form in a stratified rotating fluid, 
when Et 4 as 4 1, its boundary surface consisting of layers of thickness crSB 
and EB(aS)-i. The detailed structure of those layers would of course require 
special investigation. 

I am thankful to  Professor J. W. Miles and Dr R. Haberman for their help and 
comments, and to two referees for their criticism. This work was partially sup- 
ported by the National Science Foundation, under Grant NSF-GA-10324, and 
by the Office of Naval Research, under Contract N00014-69-A-0220-6005. 

ments. Comparison with our theory is thus impossible. 
t Unfortunately, Daxies does not give the value of the Prandtl number CT in his experi- 
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